16 бит тому назад - Российский Game Dev.


Несколько старых давно забытых российских игр.
16-bits.ru

Наша группа ВКонтакте, которая обновляется каждый день:
vk.com/gamesbusters
Свежие новости, скидки на игры, пополняемые альбомы и чат на стене! Вступай!

16 бит тому назад - Sega Teradrive


Про приставку Sega Megadrive и компьютер Sega Teradrive
htp://16-bits.ru

Наша группа ВКонтакте, которая обновляется каждый день:
vk.com/gamesbusters
Свежие новости, скидки на игры, пополняемые альбомы и чат на стене! Вступай!

16 бит тому назад - История Neo Geo


История игровых систем под общим брендом Neo Geo
16-bits.ru

Наша группа ВКонтакте, которая обновляется каждый день:
vk.com/gamesbusters
Свежие новости, скидки на игры, пополняемые альбомы и чат на стене! Вступай!

NES, Famicom, Dendy / Гид по покупке консоли


Две недели скидка 20% на все умные брелки и карточку Chipolo Card
Промокод PIXEL20
Купить в интернет магазине shop.chipolo.ru bit.ly/3kuhbZ4

____________________________________________________________________

✔Новые видео каждую неделю! Подписывайся — www.youtube.com/subscription_center?add_user=pixeldevillive
✔Поддержать канал — www.patreon.com/pixel_devil

NES, Famicom, Dendy / Гид по покупке консоли

Эпизоды:
00:00 Семейства NES и Famicom
01:46 Умные брелки Chipolo
04:28 Все о консолях Famicom
12:44 Все о консолях NES
18:48 Вопросы совместимости
22:51 Способы вывода видео сигнала
23:58 Выбор оптимальной консоли
28:13 О клонах

★ Футболки с моим дизайном — rgeekshop.ru/

☆ Мой основной канал — www.youtube.com/user/PxlDevil
☆ Мой стрим канал — www.youtube.com/channel/UCiZCfOkt1XmPKcUHFSdxt1Q

Канал в Телеграм — teleg.run/pxldevil
Мой паблик Вконтакте — vk.com/pxldevil
Я Вконтакте — vk.com/pixel_devil
Твиттер — twitter.com/Pixel_Devil
Инстаграм — instagram.com/pxldevil
Перископ — www.periscope.tv/pixel_devil

#Pixel_Devil #Nes #Famicom #Dendy
#Chipolo, #умныйбрелок, #брелок, #антипотеряшка, #bluetoothметка, #метка

✔ Реклама и сотрудничество — vk.com/topic-46775184_27913782 или письмом на reklamapxldevil@yandex.ru

Секрет Сложнейших Фракталов... Наглядно и в Анимации!


Помочь денежкой: www.donationalerts.com/r/vectozavr

telegram: @vectozavr
Instagram: www.instagram.com/vectozavr
vk: vk.com/public179407034
Статья: ilinblog.ru/article.php?id_article=38
Навигатор по множеству Мандельброта: www.michurin.net/online-tools/mandelbrot.html
Здесь можно срендерить любое место фрактала в 2K: sunandstuff.com/mandelbrot/
Еще один генератор: nadin.miem.edu.ru/1111/
Погружение в множество Мандельброта на протяжении часа: www.youtube.com/watch?v=UJzB-6T9QCs
Код множества Жюлиа: github.com/vectozavr/PhysicsSimulations/blob/master/julia_set.cpp

Я расскажу о том, как получить невероятно сложные и красивые фракталы, как замоделировать молнию, рост плесени и броуновское движение, а также расскажу, по каким правилам растут папоротники. Уверяю: это перевернёт ваше представление о природе!

Для построения множества Жюлиа понадобится небольшая формула над комплексными числами! Вместо того, чтобы сразу разбирать полную формулу, я предлагаю сначала занулить константу C.
Понятно, что если точки находятся внутри единичного круга, то они должны притянуться к центру. Точки, которые находятся вне единичной окружности будут отдалятся от нуля.
Точки, находящиеся на границе окружности, будут оставаться на границе.
Нас интересуют только такие точки плоскости, которые не уходят на бесконечность. Понятно, что для данной формулы множество таких точек – это круг радиуса 1.
А что теперь будет, если в формулу добавить очень маленькую константу C и постепенно увеличивать её по модулю. Если немного подождать, то мы увидим уже знакомое нам множество Мандельброта. При некоторых параметрах фрактал разделяется на небольшие островки, которые то образуются, то опять комбинируются в единое целое.

Увеличивая границу этого множества, мы будем видеть все больше и больше мелких деталей. Каждая отдельная часть содержит бесконечное множество вариаций исходного фрактала.

Одна компактная формула способна породить целую вселенную с бесконечно сложными циклонами, причудливыми иглами, острыми вилами, полувилами, супервилами, тайфунами, небоскребами, океанами, долинами морских коньков и долинами слонов.

Вместо второй степени можно выбрать любую: третью, четвёртую, пятую, восьмую и даже дробную.
Фракталы можно строить в трехмерном, четырёхмерном или даже в пятисотмерном пространстве.
Для более высоких размерностей используют уже не комплексные числа, а, например, кватернионы. Это не пары чисел, а группы по 4 числа.
Каждый трехмерный фрактал, полученный той или иной формулой, – это сечение четырёхмерного множества. Для алгебры октав или Клиффорда эта область математики на данный момент изучена мало.

Во многих областях физики можно встретить фракталы. Один из самых известных примеров – движение Броуновской частицы. Если подождать достаточно долго, то можно увидеть, что траектория движения броуновской частицы самоподобна.
На этом фрактальность не заканчивается. Представьте теперь, что частицы движутся и могут прилипать к статичной затравочной частице в центре. Сначала мы с некоторого радиуса с произвольной стороны выпускаем частицу. Если она оказалась рядом с затравочной, то она к ней прилипнет. После этого мы опять выпускаем частицу и ждем её прилипания.
Постепенно налипает все больше и больше частиц. Образуется структура, называемая кластером.
Частицы, двигаясь по фрактальным траекториям, прилипают друг к другу и образуют фрактальный кластер.

Можно ввести вероятность прилипания и сделать её тем выше, чем больше соседей вокруг.
Забавная структура, да ещё и очень похожа на то, что мы наблюдаем в реальном эксперименте при химической агрегации DLA кластеров.

Коронный разряд — очень красивое явление, которое тоже является фракталом! С помощью уравнения Лапласа можно смоделировать распространение молнии.
При изменении свойств среды, в которой распространяется молния, изменяется ветвистость структуры.

Возьмем три любые точки на плоскости. Теперь нужно выбрать произвольную точку и много раз делать простую процедуру. Выберем одну из трех зафиксированных нами точек и сместимся в её сторону на половину расстояния до неё.
Так мы будем делать снова и снова. Получившаяся фигура называется треугольником Серпинского: это один из самых популярных фракталов.
То есть мы случайно смещались в сторону одной из вершин треугольника и получили такой фантастический результат.
Это работает не только с треугольником.

Можно задать другое правило: en.wikipedia.org/wiki/Barnsley_fern
Если запрограммировать это правило, то получится папоротник Барнсли. Каждое из этих четырех правил отвечает за рост его отдельных частей.
Достаточно четырёх преобразований для хранения всех возможных комбинаций папоротников.

Поэтому фракталы уже давно применяют в компьютерной графике для генерации миров в играх. Они получаются очень интересными и разнообразными.
Вот такая интересная бывает математика.

Огромная благодарность всем моим спонсорам на patreon!

16 бит тому назад - История Palm


История компаний Palm Inc., PalmSource, PalmOne, Handspring и, частично, GRiD, Apple, Intel, USRobotics и 3Com.
16-bits.ru

Наша группа ВКонтакте, которая обновляется каждый день:
vk.com/gamesbusters
Свежие новости, скидки на игры, пополняемые альбомы и чат на стене! Вступай!

Иностранец / The Foreigner (2017) / Боевик, Триллер, Драма


Бывший спецагент, ветеран вьетнамской войны Цюань давно сложил оружие и завел мирную жизнь. Но после того, как в теракте прямо на глазах погибает его дочь-подросток, видя, что власти не спешат разыскивать преступников, Цюань сам начинает поиск убийцы. Он пойдет на все, чтобы совершить праведное возмездие…

Год: 2017
Жанр: боевик, триллер, драма, криминал, детектив
Страна: Великобритания, Китай, США
Режиссер: Мартин Кэмпбелл
Автор сценария: Дэвид Маркони, Стефен Лезер
Актеры: Джеки Чан, Пирс Броснан, Майкл Мак, Элхаттон, Лю Тао, Чарли Мерфи, Орла Брэйди
Возрастной рейтинг: 18

#боевик #триллер #драма #криминал #детектив